Course

PCA in JMP

Ended Oct 16, 2019
2 credits

Spots remaining: 14

Enrollment is closed
Add yourself to the wait list and you'll be auto enrolled when a spot opens

Add to Wait List

Full course description

Term: Fall 2019
Date: October 16th, 2019
Time: 5:00pm - 7:00pm
Location: ONLINE ONLY
Instructors: Kate Miller, Frances McCarty, & Jen Van Mullekom.
Presented By: This course is jointly sponsored by the Statistical Application and Innovations Group (SAIG) and Networked Learning Initiatives (NLI).
Zoom: https://virginiatech.zoom.us/j/295891944  

NON VT FACULTY MEMBERS PLEASE REGISTER HEREhttps://forms.gle/QgBpvU5b2ZRHHE8Y6

Description:

Often researchers face the challenge of having data that includes many correlated variables. PCA is a technique that is often used in these cases to aid in interpreting the observations and variables. The results of PCA can often be used in ANOVA and regression models. In this short course, we will cover:
• Understanding what scenarios PCA can be useful for.
• Understanding what PCA is.
• Learning to apply PCA transformation in JMP.
• Interpreting PCA for dimension reduction / what not to do.
• Using PCA for robust modeling.
 
Attend this course on [date] from [time] in [location]. No previous experience with JMP is required! Bring your laptop with JMP installed on your machine. You can download JMP from the Virginia Tech Software Service Center from the following links:  
 
 
If you already have JMP on your laptop, make sure it’s the most up to date versions.
Available by Zoom. Available in the National Capital Region (NCR)